Discovering the Undercurrents: A Glimpse
at Technical Debt in Self-Adaptive Systems

Roberto Verdecchia
University of Florence

Technical Debt is a game of Tetris™

L

g

— I\HJJTHJX!II)G;\)‘/‘E B()/mr

https://medium.com/s/story/technical-debt-is-like-tetris-168f64d8b700

https://medium.com/s/story/technical-debt-is-like-tetris-168f64d8b700

Technical Debt is a game of Tetris™
il | S = I STy

r LINES =007
A-TYPE - 4

= _1.,

STATISTICS

WEE 0049

e
m OO

e 005

Em 002

ant 9OR

-I-
OQOD

0

e [e ST

LINES =001
=

e

-
rﬁ - TYPE !L

= :

STATISTICS

T 002
At the start mEE 001
complexity is low... o i

am® OO1

rww
L QOZ2

)

e [e ST

LINES =009
=

e

I'n-wa_!

= :

STATISTICS

Building on the side

"a 004
might be a sound P, et
strategy = 001

amy OOZ2

rww
L QOS

-

e [e ST

LINES =007
=

e

I'n-wa_!

1 |

STATISTICS

Some make the e
game more difficult, "" 004
but are acceptable i
= oo
BB 5

Tl

"

LINES =010

I=<I=L5Rs

s

b,

JER LSS Saa
P LINL
R//AEEE, DmmnEn
Bl AERZoSEERZas

PP Ll P

T4
N\

i

/N |

NEE
N
 LEE JEEEEE
B asNhmdd R RN

)pamm, .
)
pan

i

ESI=

A-TYPE

3l

STATISTICS

=1

-

| e

o11
mEE 008

o08
o04q

Ry O10
o088
CE T P

hinder

Too many

n
R,
O
L)
o
S
v
c
6o
=
=
9
=
(2]
O
a

Unable to place new
blocks?

Game Over!

FIEETRI==

L |Aa=-TYPE

— I [

STATISTICS

LA]
-

v
el
2]

"TEEw

—— H 54

EeTr

LINES =010

| |]] il] N

B r'—

i J

Technical debt core concepts

e Technical debt principal: Cost of fixing the short-term expedient

e Technical debt interest: Extra effort needed to extra effort needed to
maintain the system

Reckless Prudent

“We don’t have time “We must ship now
for design” and deal with
consequences”

Deliberate

Inadvertent

“Now we know how we
should have done it”

“What’s Layering?”

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

Requirements TD Over-engineering ~ [——>{S71

echnical debt types

Architectural TD
(15/25)

Not specified f—>is23,

Architecturesmells ~ ——$57

Architectural
anti-patterns
Complex architectural
behavioral dependencies
Violations of good
architectural practces
Architectural
compliance issues
System-level structure
quality issues

Not specified

[—— 833,

7 88
— 816
——> 841, 51, S61, S72, 576, $88, 594
——| 88, 817, S22, $47, S48, S51, S55, 588
H%sgmﬁ §47,548, 563, 570, S71, 877,

S4, 12, 525, S33, 536, 541, S47, S58, S76,
I S91, 597, 584

The Journal of Systems and Software 101 (2015) 193-220 Code smelis

Complex classes or S22, 549, 851

= Design TD
fii -

foutnalhomepage: wilsevircomocatels iddinaatii

Grime >33, 841,594

incomplete design
specification

Not specified —

Contents lists available at ScienceDirect

[s

S84, 537, S52, S55, S60, 569, S72, 583, S91,
S92, 593

The Journal of Systems and Software
Low-quality code ——> S6, S15, $28, S34, S47, S48, S77

Duplicate code
$14, 516, S17, 522, S24, S26, S27, S29, S38,
S41, 547, S48, S49, $58, S69, 579, 594
[{1 526 527, 529, S, 546, 550, Sa3. S60,
3, 57, 520, 539, S42, S50, 551, 562, S83,
" s80, S87

Coding violations

Code TD
(25/38) Complex code
Not specified

Low code coverage ——>(S22, S29

A systematic mapping study on technical debt and its management @ -

Zengyang Li**, Paris Avgeriou?, Peng Liang "¢ Defering testing (———3 534, 572, 576

Lack of tests —>1 S24, 529, $65, S69
S4, 811, $12, 527, S32, 38, S58, 565, S69,
Lack of test automation (———{ &7, p

2 Department of Mathematics and Computing Science, University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands
b State Key Lab of Software Engineering, School of Computer, Wuthan University, Luojiashan, 430072 Wuthan, China

< Department of Computer Science, VU University Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands Test TD

(15/24)

Residual defects not found 75

Expensive tests —s15

Estimation errors in test
effort plan

Not specified {89, S12, 547, S48, S52, 63, S75, 577,593

ARTICLE INFO ABSTRACT ——is7s

Article history:

Received 11 July 2014

Revised 10 December 2014
Accepted 10 December 2014
Available online 16 December 2014

Keywords:

Systematic mapping study
Technical debt

Technical debt management

Context: Technical debt (TD) is a metaphor reflecting technical compromises that can yield short-term benefit
but may hurt the long-term health of a software system.
Objective: This work aims at collecting studies on TD and TD management (TDM), and making a classification
and thematic analysis on these studies, to obtain a comprehensive understanding on the TD concept and an
overview on the current state of research on TDM.
Method: A systematic mapping study was performed to identify and analyze research on TD and its manage-
ment, covering publications between 1992 and 2013.
Results: Ninety-four studies were finally selected. TD was classified into 10 types, 8 TDM activities were
identified, and 29 tools for TDM were collected.
Conclusions: The term “debt” has been used in different ways by different people, which leads to ambiguous
interpretation of the term. Code-related TD and its management have gained the most attention. There is a
need for more empirical studies with high-quality evidence on the whole TDM process and on the application
of specific TDM approaches in industrial settings. Moreover, dedicated TDM tools are needed for managing
various types of TD in the whole TDM process.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

accumulated incrementally, which in turn results in challenges for
maintenance and evolution tasks.

Technical debt (TD) is a metaphor reflecting technical compro-
mises that can yield short-term benefit but may hurt the long-term
health of a software system. This metaphor was initially concerned
with software implementation (i.e., at code level), but it has been
gradually extended to software architecture, detailed design, and
even documentation, requirements, and testing (Brown et al.. 2010).
Although the technical debt metaphor was proposed two decades
ago, it has only received significant attention from researchers in the
past few years.

Both intentional and unintentional TD_(McConnell, 2008) should
be managed in order to keep the accumulated TD under control (Lim
et al, 2012). TD management (TDM) includes activities that pre-
vent potential TD (both intentional and unintentional) from being
incurred, as well as those activities that deal with the accumulated
TD to make it visible and controllable, and to keep a balance between
cost and value of the software project.

In order to systematically manage TD, it is necessary to have a clear
and thorough understanding on the state of the art of TDM. Different

Buid TD
(2/3)

Documentation
TD (10/19)

Infrastructure TD

Versioning TD
)
Defect TD
(7/111)

Y Y VYV Y VY VY YV VY VY Y VY VYV VYV VY VYV VY VY YYVY YV VY IYYVYYYVYYYVYYVYYVYVYY

Bad dependencies
Manual build process
Flawed automatic building

Build visibility debt

Out-of-date
documentation

Incomplete documentation
Insufficient documentation
Lack of code comments
Not specified
Old technology in use

Old supporting tools in use

Lack of continuous
integration
Lack of automated
deployment

Poor release planning
Not specified
Unnecessary code forks
Multi-version support

Defects/bugs

—s89

— S84

> 869
—>s59

[—— 572,576
—

——> 527, 538, 572

_)S.S.;g S22, 524, 526, 529, S38, S08, S69, 572,

——>1 89, 547, 548, S52, S63, S77
) s24

> s24

[—> 869

[s69

—s53

[—s12, 574,877

—s32

—)s32

6, 512, 519, 534, 543, 569, 572, S80, 590,
593,894

Technical debt types

" el e

iy
34 self.\ogdupes - 11
self.debug - Gebwg ¥ :
% "‘;-_‘;"" [s ;
i - —
3375 self.ﬂ\‘l. e 3 -
self.file S &
3‘?’ Self. fingerprista.iniiie.
a
hod
Q2 classnet! L
a def frm—s“m:::‘.;‘ — .
P cls(job_dir(settingsds ——
) g
o een(selfs request)t
P o ;?u“steﬁ.mmx_twwwlﬂ
- fp in selfut
p- True
s:‘ self.ﬂme‘r\urmi.w(hl
Jfile:
® sesle‘;f‘ﬂ\.e.urne(" on. Linewpd
% request)t
» def request_fingerprim(ul',
*»

request!
requas!_f ingerpr Ant(

Code TD: complex code, code
violations, dead code, ...

Test TD: low coverage, flaky tests,

Architecture TD: architectural smells,
underperforming tests, ...

technology lock-in, stuck on POF, ...

Requirements TD, e.g., ill-defined

Requirements TD, e.g., unclear
requirements, simplistic context definition...

requirements, simplistic context definition...

Technical debt analysis approaches: Quantitative analyses

ache: !0, async 1,global:!1, b ['\m"" =

" e e w2 insertBefore this[0]),b.map(function() {var o

FRRIS + Uhis each function(b) (n(this .wrapInner(a.call(this,b))}):this.each(funct

| LB " 1} rap: function(){return this.parent(). each function

a.type) return!o; a
In.expr.filters.hidden(1));var
=typeof ei&

+encodeURIComponent (h)} if(void

).replace(Zb,"+")},r

2014 TEEE International Conference on Software Maintenance and Evolution

retu

An Exploratory Study on

“ ‘ T Self-Admitted Technical Debt

o farc o ,b,e);return d.join(
~ "is 'nn' l—(

.extend

Aniket Potdar Emad Sl
ishrray .) Department of Software Engineering Department of Computer Sciend
o Information and Software Technology 128 (2020) 106377 Rochester Institute of Technology Concordia Uj 2017 IEEE International Conference on Software Architecture Workshops
Rochester, NY, USA Montreal, Q

Contents lists available at ScienceDirect Email: asp6719@rit.edu Email: eshihab@c

st e e Tednrlgy Arcan: a Tool for Architectural Smells Detection

areas of the software.
developed natural lang]
bug inconsistencies. Of

Abstract—Throughout a software development life cycle, devel-
opers knowingly commit code that is either incomplete, requires
rework, produces errors, or is a temporary workaround. Such
incomplete or temporary workarounds are commonly referred to k
as *technical debt’. Our experience indicates that self-admitted Telationship between §
technical debt is common in software projects and may negatively (€. [71, [8]) and use
impact software maintenance, however, to date very little is ity [9].
known about them. The majority of the

‘Therefore, in this paper, we use source-code comments in four .2 are due to unin
large open source software projects - Eclipse, Chromium 08, M &%" < ‘0 1 Abstract—Code smells are sub-optimal coding circumstances
Apache HTTP Server, and ArgoUML to identify self-admitted Y such s lb casses or spaghet code - hy e ecivd much
technical debt. Using the identified technical debt, we study ~ However, to the best tention and tooling in recent software engineering research.

Francesca Arcelli Fontana®, llaria Pigazzini', Riccardo Roveda*, Damian Tamburrit,
Marco Zanoni*, Elisabetta Di Nitto!
Universita degli Studi di Milano - Bicocca, Milan, Italy
Email: {arcelli riccardo.roveda,marco. zanoni } @disco.unimib.it*, i.pigazzini@campus.unimib.itt
Politecnico di Milano Dipartimento di Elettronica, Informatica ¢ Bioingegneria, Milan, Italy
Email: (damianandrew.tamburri,elisabetta.dinitto} @polimi.it*

journal homepage: www.elsevier.com/locate/infsof

On the diffuseness of technical debt items and accuracy of remediation
time when using SonarQube

In a previous work [6], we outlined the detection algorithms
hardeoded within Arcan. The original contribution of this

: 5 . i " . i g
Maria Teresa Baldassarre?, Valentina Lenarduzzi®, Simone Romano?, Nyyti Saariméki paper is its focus on: (a) the tool's architecture and inner

“universty of Bar,laly
SLUT Universy, Filand
Tampere Univery, Filand

ARTICLE INFO

ABSTRACT

Keywords:
Technical debt
Remediation time
Effort estimation

Context. Among the static analysis tools available, SonarQube s one of the most usef
nical Debt (TD) items—i.c., violations of coding rules—and then estimates TD as the
items. However, practitioners are still skeptical about the accuracy of remediation

1) the amount of self-admitted technical debt found in these
projects, 2) why this self-admitted technical debt was introduced
into the sofoware projects and 3) how Hel i the scl adnited
technical debt to be removed after their introdue . We find
that the amount of sclfadmitied technical debt exists in 24%
- 31% of the files. Furthermore, we find that developers with
higher experience tend to introduce most of the self-admitted
technical debt and that time pressures and complexity of the
code do not correlate with the amount of self-admitted technical
debt. Lastly, although self-admitted technical debt is meant to be
‘addressed or removed in the future, only between 26.3% - 63.5%

S Objective. In this paper, we analyze both diffuseness of TD items and accuracy of rem| of self-admitted technical debt gets removed from projects after
Cliondy SonarQube, to fix TD items on a set of 21 open-source Java projects. des Sitrodnction,

study where we asked 81 junior developers to fx TD iems and reduce the T of 21 pe

that TD items are diffused in the analyzed projects and most items are code smells. 1. INTRODUCTION

out that the remediation

fix TD items, is in et case overestimated, Conlusons. The enlts of nuumdy are

1d, as compare
Delivering high quality, defect-free software is the goal of

e — study as a starting point for improving D estimation models.

all software projects. To ensure the delivery of high quality
software, software project often plan their development and

1. Introduction

alotof effort,
panies have been \nvesnng in refac\onng activities to remove every-
thing that can impact the quality of their products, including technical
issues [1.2] like ncn—compha\\ce with specific coding rules or with doc-
umentation conventions. Neglecting such issues can reduce the overall
quality and consequently increase the Technical Debt (TD) of the entire
system over time.

TD has been defined as “making technical compromises that are ex-
‘pedient in the short term, but that create a technical context that increases
complexity and cost in the long term” [3]. Software companies usually
adopt static analysis tools to measure software quality and TD [4=
6. Among the static analysis tools available, SonarQube! is one of
the most used—e.g., it has been adopted by more than 100K organi-
zations including nearly 15K public open-source projects L7, Sonar-
Qube checks for code compliance against a set of coding rules (i.e.,
technical issues). If the code violates any of the classified rules, Sonar-

e considers it a violation or a TD item. Moreover, it defines TD as
ha time naaded f1e remedinting thne) tr refactnr the winlared eiiles

efforts. However, in many cases, developers are
rushed into completing tasks for various reasons. A few of
these reasons mentioned in prior work include, cost reduc-
tion, satisfying customers and market pressure from competi-
tion [1]. Intuition and general belief indicate that such rushed
study 1121 proposed a “surgically-precise” T0| development tasks (also known as technical debt) negatively
enable a more precise and fine-grained lens of] impact software maintenance and overall quality [2].
items. The results highlighted the need to keep rack of the actual
remediation time to fix TD items, in order to assess the accuracy of the
estimated remediation time in TD tools.
In our previous work [10], we investigated the accuracy of the re-
mediation time suggested by SonarQube to fix TD items and the diffuse-
ness of TD items. To assess the accuracy of SonarQube’s remediation
time we needed to compare the actual time with the estimated one. As
50, we conducted a case study where we asked 65 junior developers to
remove TD items from 15 open-source Java projects. We then compared
the effort (i, time) developers spent to remedy TD items against the
estimation proposed by SonarQube.
‘This paper extends the previous one (101 as follows:

The diffuseness of TD items in software sy
tent TD items are present in software system:
in previous work [5,9] whereas the overarci
on software quality needs further attention (2

+ We increased the number of participants (from 65 to 81) and number

examined the impact
intentional (i.c., self o
technical debt). Study]
important since they
we show later in thi
they negatively impacf
Therefore, in this
to better understand
by prior work (e.g.,
code comments to dj
perform our study on
Eclipse, Chromium
focus on quantifying
debt (RQ1), on detern]
is introduced (RQ2) af
debi is actually remoy
We make the follo
« Identify commer
technical debt.
code comments
admittedtechnicy
different comme
technical debt.

Higher-up In the absiraction Jevel, architccnual smels e pro-
blems or sub-optimal architectural patterns or other design-level
characteristics. These have received significantly less attention
even though they are usually considered more ertcal (han

code smells, and harder to detect, remove, and refactor. This
(et i R N amlopm for
of architectural smells through an evaluation of

seversl arcnlwcmre dependency issues. The umcnm. Lcchnlllues

iy In sl detsction and beter ‘management of lxnle
‘amounts of inds.
el lhc cvalmllon of Arean resuls carried oul.
with real-ife softwa if th
el Gicted by Arcan are sl preened 2 robleme and
10 get an overall usefulness evaluation of the tool.

1. INTRODUCTION

It is an established fact that good software architecture and
design lead to better evolvability, maintainability, availability,
security, software cost reduction and more [1]. Conversely,
when that architecture and design process are compromised
by poor or hasted design choices, the architecture is often
subject to different architectural problems or anomalies, that
can lead to software faults, failures or quality downfalls such
as a progressive architecture erosion [21, [3]. A category of
these anomalies s represented by architectural smells, that are
caused by a violation of recognized design principles with a
negative impact on internal system quality [4].

To aid the detection and removal of architecture smells
(AS), this paper introduces Arcan, a static-analysis software
useful to support software developers and designers during the
development, maintenance and evolution of Java applications.
Arcan is able to detect 3 architectural smells (i., Cycle De-
pendency, Unstable Dependency and Hub-Like Dependency).
‘We focused our attention on AS related to dependency issues;
we will consider other AS in the next future. The design
of our tool felies on recent advances in graph database
technology and graph computing: once a Java project has been
analyzed by Arcan, a new graph database is created containing
the structural dependencies of the system. Thanks to graph
‘computing and connected big data processing technology 15],
itis then possible to run detection algorithms on this graph to
extract information about the analyzed project (package/class

workings; (b) on the improvements of its detection strategies
for the Cycle Dependency smell, and (c) on the manual
validation of the detection results of Arcan done by real-life
Software developers. The latter exercise enabled us to evaluate
‘whether the detected architectural smells are indeed perceived
as problems by the software developers responsible for them.
By means of this evaluation exercise, we were able to provide
a first evaluation on how the tool works and on its results in
terms of precision and recall. According to the feedback of
this validation, we outline and discuss future directions for
research and extensions of the tool. More in particular, we
leaned the need for a Severity Index to identify the most
critical smells (o be analyzed and removed first. This Index
would help developers to identify and estimate refactoring
needs and their rough cost.

IL RELATED WORK
As previously stated, many tools have been developed for
code smells detection but only few tools are currently available
for architectural smells detection. The following briefly reports
on some of them. First, the commercial tool inFusion' and
its evolution in AiReviewer’ support the detection of both
code smells and some design or architectural smells. Another
commercial tool is Designite’ that detects several design
smells in C# projects. The Hotspot Detector [7] tool detects
five architectural smells, called Hotspot Patterns, four patterns
defined at file level and one at package level. Other tool
prototypes have been proposed, e.g., SCOOP 18], and one from
Garcia et al. [9]. We outline that AiReviewer and Designite are
commercial tools and according to our knowledge the other
tools are not yet publicly available. Moreover, there are diffe-
rent commerial tools s for example Sotograph, Sonargraph,
Structure 101 and Cast which are able to detect different
kinds of architectural violations, as dependency cycles. Our
tool (available at hitps//essere.disco.unimib.it/wiki/arcan), by
analyzing compiled Java files, detects three AS. We compute
the Cyclic Dependency AS among classes and packages, and
we detect it according to different shapes. We exploit different

Hatositus, b intositus comlproductinfusion
[—
Fom. iy ainbaron e e 2NN

Technical debt analysis approaches: Qualitative analyses

The Journal of Systems & Software 176 (2021) 110925

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.clsevier.com/locate/jss

Information and Software Technology 139 (2021) 106669

Contents lists available at ScienceDirect Building and evaluating a theory of architectural technical debt in

software-intensive systems

Information and Software TeChHOIOgY Roberto Verdecchia®, Philippe Kruchten", Patricia Lago **, Ivano Malavolta **
Ve Unierseic Amsterdam, The Netherands

‘ ; ® University of Britsh Columbia, Vancouver, Canada
journal www.elsevier. < Chalmers University of Technology, Gothenburg, Sweden

Science of Computer Programming 163 (2018) 42-61

Contents lists available at ScienceDirect

ARTICLE INFO ABSTRACT Science of Computer Programming

. Atticle history: Architectural technical debt in software-intensive systems is a metaphor
Architectural design decisions that incur technical debt — An ind Received 22 December 2020 design deciions (€., chotoesrepardiog Srachare, Framevoks,tchmologies www.elsevier.comflocatelscico
Accepted 8 February 2021 being suitable or even optimal when made, significantly hinder progress
study Availbl online 27 Februy 2021 types of debi, such as code-level technical debr, can be readily detected by
eSS be refactored with minimal or only incremental efforts, architectural debt
Mohamed Soliman *, Paris Avgeriou *, Yikun Li Software engineering wide-ranging remediation cost, daunting, and often avoided.
Software architecture In this study, we aim at developing a better understanding of how softw] . . .
‘Bernoull Instiute for Mathemarics, Gomputer Science and Artficial Inteligence, University of Groningen, Groningen, The Netherlands Technical debt tions coneeptualize architectural debt, and how they deal with . [n order t Technical Debt tracking: Current state of practice
‘we apply a mixed empirical method, constituted by a grounded theory stud x. 3 B .
Grounded theory With th grounded theory method we construct theary on archifectural A survey and multiple case study in 15 large organizations
ARTICLE INFO ABSTRACT Focus group qualitative data from software architects and senior technical staff from a w]
s dielynen gt e e e s goup mehod - Antonio Martini -, Terese Besker®, Jan Bosch
Keywords: Context: During software development, some architectural desij The: rasult of the stady, i%, 4 thisary smacging from thi gathansd & "
Technical debt del.lbera(ely or inadvertently. These have serious impact on the fimod ly - 3 & ryl ':E EI et o & d : CA Technologies Strategic, Research Team Barcelona, Spain
el o beracly or nadvertenty. These ave sero : passing conceptual model of architectural technical debr, identifying an * Unestyof O, Prgramming nd Sovar e Ot N
n ge ile current research its symptoms, causes, consequences, management strategies, and communj Computer Science and Engineering, Chalmers (lwvemvyo/'!ecnnmugy (mrhmg Sweden
A;:‘::z:' ;:‘:C R architectural design decisions and technical debt separately, debt-ir conducted focus groups, we assessed that the theory adheres to the four ¢]
itectural i not been specifically explored in practice. grounded theory, ie, the theory fits its underlying data, is able to work, has
Objective: In this case study, we explore debt-incurring architect Asipewidataiappeits. ARTICLE INFO ABSTRACT

By grounding the findings in empirical evidence, the theory provid
Specifically, we explore the maln typed.of DADDe; why azd how tioners with novel knowledge on the crucial factors of architectural tec!

ow practitioners deal with these types of design decisions. A et e Large software companies need to support continuous and fast delivery of customer value
Method: We performed interviews and a focus group with practiti ©2021 The Author(s). " ey (ot i A T ot the:Short;and fontem. Hovweves this can bihindered i o the evirion
software companies, discussing their concrete experience with sud (https/fcreativecon 3 ot 2008 and maintenance of existing systems are hampered by Technical Debt. Although a lot ol

theoretical work on Technical Debt has been Dmdu(ed recently, its practical management

Results: We provide the following A vailble online 29 March 2018

e Dp coeprem, lacks empirical studies. In this paper, we investigate the state of practice in several
y jons. . ! o companies to understand wha the ot of managing TD is, what ool are used (o track

3) A conceptual model which shows the relationships between the 1. Introduction qualites, primarily maintainabilty and m",m e 0 Sl ke, 5 rsngprocten & Hvadused e praesice, e somane s phsiess 3

4) The main factors that influence the way of dealing with DADD:)) survey involving 226 respondents from 15 organizations and an in-depth multiple case

Conclusion: The results can support the development of new app Technical Debt (TD) is a concept that has been with us for Technical deb cain take many d‘"”c Sonwm e improwmen study in three organizations including 13 interviews and 79 Technical Debt issues. We

a long time, at leasl smre 1992 when Cunningham crafted the Vflupmfm and can be found in many di
While much of the liter
able mday address code-level technical
Architectural Technical Debt (ATD). Thi
incurred at the architectural level of sol

selected the organizations where Technical Debt was better tracked in order to distill best

e ity practices. We found that the development time dedicated to managing Technical Debt is
substantial (an average of 25% of the overall development), but mostly not systematic: only

a few participants (26%) use a tool, and only 7.2% methodically track Technical Debt. We

found that the most used and effective tools are currently backlogs and static analyzers. By

Debt management from the perspective of Design Decisions. Moreo 2
architecture knowledge related to DADDS phrase but it only got some real attention

from researchers in the last 10 years What
is technical debt? “In software-intensive systems, technical debt
consists of design or implementation constructs that are expe-

1. Introduction effort on maintenance, thus bej dient in the short term, but set up a technical context that can L ecisions “‘a;“’ o the. ‘h‘"‘f of stry studying the approaches in the companics participating in the case study, we report how
example of inadvertent DADDs} make a future change more costly or impossible. Technical debt [C:‘“p,“ri';‘;"}v‘o"ri‘ sﬁfa'“z;“::;:;‘::); companies start tracking Technical Debt and what the initial benefits and challenges are.
Architectural design decisions (ADDs) have the biggest impact on becomes obsolete after a few ye, is a contingent liability whose impact s limited to ntemal system ¢uer e Ebals P B8 IOECS O Finally, we propos 2 Srtegc Adopdon Model for the introducion of racking Technical
the quality of a software system, and they are hard to change after their an optimal decision in the past systems grow in size and their lifespan © 2018 The Authors. Published by Elsevier BV, Thisis an open access article under the
implementation [1]. Some ADDs incur technical debt, i.e. they “set up and unnecessary complexity. * Editor: [RAFFAELA MIRANDOLA] many of these original design choices CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.
a technical context that can make future changes more costly or im- Refated research wodkion'ar * Corresponding author. limit future evolution or even prevents

possible” [2]. We call these Debt-incurring Architectural Design Decisions E-mail addreses:_rerdecchia@vu.nl (R, Verdecchia), phi@ece.ube.ca developers do find workarounds and oft

(DADDS), and their impact is well recognized by both practitioners and
researchers [2,41. DADDs can be either deliberate or inadvertent [5].

Deliberate DADDs are taken because of time pressure or lack of
resources: a solution is chosen that is quicker and cheaper but com-
promises maintainability and evolvability. For example, instead of
adhering to the layered structure of the architecture, shortcuts are
created that bypass layers. This results in implementing the required
features quicker, but those shortcuts create ripple effects when making
changes.

Inadvertent DADDs, are decisions that, when taken, do not bear any

empirically explored different typerors
lations) 18], thei causes, rends [9] and effects 5]. Moreover, methods
were proposed to identify ATD (e.g. through capturing architectural
bad smells from existing systems) [10]. Nevertheless, current studies
have not examined ATD from the perspective of the Architecture Design
Decisions (ADDs) that incur it cither deliberately or inadvertently. This
is of paramount i to inform the of
approaches to manage ATD, as well as tools to support the decision
making process.
In this paper, we aim at exploring the current state of practice in
induetrv recardine DADDe: we determine tvnes of DADDe we <tiidv the

1. Introduction

Large software companies need to support continuous and fast delivery of customer value both in the short and long
i However, this can be hindered if both the evolution and maintenance of the systems are hampered by Technical
Del

Technical Debt (TD) has been studied recently in the software engineering literature [1-4]. TD is composed of a debt,
which is a sub-optimal technical solution that leads to short-term benefits as well as to the future payment of interest,
which is the extra cost due to the presence of TD (for example, slow feature development or low quality) [5]. The principal
is regarded as the cost of refactoring TD. Although accumulating Technical Debt might prove useful in some cases, in others,
the interest might largely surpass the short-term gain, for example, by causing development crises in the long term [6].

Technical debt is context specific

The Journal of 0) 110710

Contents lists available at ScienceDirect

—) The Journal of Systems & Software SOFT;RE

journal homepage: www.elsevier.com/locat

. New trends and ideas

Does migrating a monolithic system to microservices decrease the
technical debt?

Valentina Lenarduzzi?, Francesco Lo

*LUT University, Finland
®Tampere University, Finland

ARTICLE INFO
2019 IEEE/ACM International Conference on Technical Debt (TechDebt) Technical Debt in Microservices:

Article history: .
Receved 20 February 2019 A Mixed-Method Case Study

Received in revised form 7 May 2020
Accepted 2

. june 2020
Architectural Technical Debt in Microservic| Aalableonine 32020

ywords: 0000 —920¢
Technical debt

Roberto Verdecchia*! , Kevin Maggi*,

A case study in a large company Avchitectural debt d Leonardo Scommegna/0000-0002— 91, and Enrico Vicariol0000-0602-
‘ode qual

Microservices
Saulo S. de Toledo Antonio Martini Agata Przybyszewska Dag LK. Sj Refactoring
Dept. of Informatics Dept. of Informatics Dest, of Computer Seience Depr. of Infor

University of Oslo University of Oslo IT University of Copenhagen University
Oslo, Norway Oslo, Norway Copenhagen, Denmark Oslo, Norv
Email: saulos@ifi.uiono Email: antonima@ifi.uio.no Email: agpr@itu.dk Email: dagsj @]

Department of Information Engineering, University of Florence, Ital
roberto.verdecchiaunifi.it,
kevin.maggiQedu.unifi.it, leonardo.scomegnaCunifi.it, enrico.vicarioQunifi.it

n
industry in microservice-based architectures and technical debt, the landscape
Absrac—niodcton: Suftware companis i 10 schire " " ’ \ Cositents remains uncharted when it comes to px—plmm the technical debt evolution in
continuous delivery to constantly provide value to their Introduction | software systems bmlt nnt This study aims to unravel
tomers. A popul.lr strategy is to .use microservices architecture. Bickgronnd]] ¢ systems that utilize microservice
However, such an architecture is alio subject {0 debt, which ub-optimal solutions can lead to costly Archited 21 Microservice] architecure, ocusing o () the patterns of 1 evolution, an () the comelation
Architecture in microservices s in fact based 2 T g between technical debt and the number of microservices. Method: We employ
es, solutions of qualities and structural features that are different from mixed-method case study on an applicati ith 13 mi ‘vices, 977 commits,
and risks related to Architecture Technical Debt in microservices. traditional systems. An example of this is the use of a collec- and 38k lines of code. Our approach combines repository mining, automated
Method: We conducted an exploratory case study of a real on self-contained microservices connected by a messaging code analysis, and manual inspection. The findings are discussed with the lead de-
life project with about 1000 services in a large, international ooy, yually called communication layer. However, knowl- ci
company. Through qualitative analysis of docurents and system usually called yer. However, knowl- veloper in a semi-structured interview, followed b
terviews, we investigated Architecture Technical Debt in the ~ ©dge about what is either a virtuous or a harmful design of Results: Despite peri
communication Iayer of a system with microservices architecture, such architectures is still missing [3], especially for evidence
r main contributions are a list of Architecture llected in a systematic research fashion and in the context
Technical Debt issues specific for the communication layer in 8 of well-established industrial systems.
tem with microservices architecture, as well as their associated

negative impact (interest), 2 solution to repay the debt and the its M”,:‘;:‘::i:‘d}“:d:‘r‘l:"“ ‘;;’::" [‘“;]‘)‘fg:;:f“;“s“b‘l‘r‘“:f‘;ﬁ’oz Developers must be cautious about the potential technical debt they might
cost (principal). Among the found Architecture Technical Debt e CEHUfa e s Sy introduce, irrespective of the development activity conducted or the number of
issues were the existence of business logic in the communication and their cost (principal of ATD) would be useful for or- t , irrespec he developr Y ¢ ¢ i

Iapér 40 a high ametnt of GoltA-pofnt connections betwsen ganizations and developmeat teaia that adopt fuicrosscvios microservices involved. Maintaining steady technical debt during prolonged pe-
services. The studied solution consists of the implementation Consequently, our research questions are: riods of time is possible, but growth, particularly during innovative phases, may
of different canonical models specifc to different domains, the RO){: What is ATD in microservices? be unavoidable. While monitoring technical debt is the key to start managing it,
nﬁgmim;’:“’,’;‘;::f’ Joipe Tootn Sk Sommwow la;‘ﬂ“&i’f-;&‘: - ROLI: What is the negative impoct Ginerest) peneraied technical debt code analysis tools must be used wisely, as their output always
We also contributed with a list of possible risks that can affect by ATD in microservices? necessitates also a qualitative system understanding to gain the complete picture.
the payment of the debt, as lack of funding and inadequate « RQ1.2: What is a solution for the identified ATD in m

prioritization. croservices and its associated refactoring cost (principal)? Keywords: Technical Debt - Microservices - Software Evolution

Conclusion: We found fssues,salutions and possble risks that Wetiiave ettt 5 1ats @ predeigt aario A
i saberostiions ur Hbchire: nof et aitountersd i /e have investigated a large company developing financial

variations can occur irresp
and microservice numbers are often correlated. Adding or removing a microser-
vice impacts TD similarly, regardless of existing microservice count. Conclusions:

Is Using Deep Learning Framewor|
Characterizing Technical Debt in Deep Lear

Jiakun Liut Qiao Huang are identified and analyzed. Results: Our results sho
-) = Al established TD types, variations of them, and four|
Coll Zh?é“"g U:‘WES'S."Y " Coll Zh?é’“’g U't’“’zs_“y PR types (data, model, configuration, and ethics debt) as
ollege of Computer Science an ‘ollege of Computer Science an af in Al-based systems, (i) 72 antipatterns are discuss
Technology ~ Technology literature, the majority related to data and model d
Hangzhou, Zhejiang, China Hangzhou, Zhejiang, China and (i) 46 solutions have been proposed, either t
jkliu@zju.edu.cn tkdsheep@zju.edu.cn specific TD types, antipatterns, or TD in general. Cc
Our results can support AI professionals with reason
Emad Shihab David Lo and communicating aspects of TD present in thei
Concordia University Singapore Management University Additionally, they can serve as a foundation for futurd
Department of Computer Science and School of Information System cf to further our understanding of TD in Al-based syste|
S G P Index Terms—Artificial Intelligence, Machine Learn)
ware Engineering ingapore Rl PSS
Montreal, Canada davidlo@smu.edu.sg Hangzhou, Zhejiang, China
eshihab@encs.concordia.ca shan@zju.edu.cn
ABSTRACT applications. Based on our findings, we highlight future research

Developers of deep learning applications (shortened as applica-
tion developers) commonly use deep learning frameworks in their
projects. However, due to time pressure, market competition, and
cost reduction, developers of deep learning frameworks (shortened
as framework developers) often have to sacrifice software quality
to satisfy a shorter completion time. This practice leads to technical
debt in deep learning frameworks, which results in the increas-
ing burden to both the application developers and the framework
developers in future development.

In this paper, we analyze the comments indicating technical debt
(self-admitted technical debt) in 7 of the most popular open-source
deep learning frameworks. Although framework developers are
aware of such technical debt, typically the application developers
are not. We find that: 1) there is a significant number of technical
debt in all the studied deep learning frameworks. 2) there is design
deb, defect debt, documentation debt, test debt, requirement debt,

2020 TEEE/ACM 42nd International Conference on Software Engineering: Software E|

Justus Bogner*
University of Stuttgart
Institute of Software Engineering
Stuttgart, Germany

Vrije Universiteit Amsterdam
Department of Computer Science

Technical debt is context specific

2021 IEEE/ACM International Conference on Technical Debt (TechDebt)

Characterizing Technical Debt and Antipatterns in
Al-Based Systems: A Systematic Mapping Study

Roberto Verdecchia®

The N ands

Ilias Gerostathopoulos*
Vrije Universiteit Amsterdam
Department of Computer Scien

The N s

justus.bogner @iste.uni-stuttgart.de

r.verdecchia@vu.nl

i.g.gerostathopoulos@vu.nl

Abstract—Background: With the rising popularity of
Intelligence (AT), there is a growing need to build
complex Al-based systems in a cost-effective and m|
way. Like with traditional software, Technical Debt
emerge naturally over time in these systems, therefore
challenges and risks if not managed appropriately. The
of data science and the stochastic nature of Al-base{
may also lead to new types of TD or antipatterns, whi
yet fully by and practiti
The goal of our study is to provide a clear over]
characterization of the types of TD (both established
ones) that appear in Al-based systems, as well as the an)
and related solutions that have been proposed. Method:
the process of a systematic mapping study, 21 primal

nical Debt (TechDebt) | 978-1-6654-1405-0/20/$31.00 ©2021 IEEE | DOL: 10.1109/TechDebt52882.2021.00016

directions and provide recommendations for practitioners.

CCS CONCEPTS

« Software and its engineering — Software evolution; Main-
taining software.

KEYWORDS

Self-admitted Technical Debt, Deep Learning, Categorization, Em-
pirical Study

ACM Reference Format:

Jiakun Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping Li.
2020. Is Using Deep Learning Frameworks Free? Characterizing Technical
Debt in Deep Learning Frameworks. In Software Engineering in Society
(ICSE-SEIS'20), May 23-29, 2020, Seoul, Republic of Korea. ACM, New York,
NY, USA, 10 pages. hitps://doi.org/10.1145/3377815.3381377

The Journal of Systems and Software 216 (2024) 112151

The Journal of Systems & Software

Contents lists available at ScienceDirect o
SOFTWARE

-

journal www.elsevier.

Technical debt in Al-enabled systems: On the prevalence, severity, impact,

L)

Updates

and management strategies for code and architecture”

Gilberto Recupito **, Fabiano Pecorelli 2, Gemma Catolino?, Valentina Lenarduzzi®,
Davide Taibi®, Dario Di Nucci?, Fabio Palomba®

*Software Engineering (SeSa) Lab — University of Salerno, Salerno, Italy

" University of Oulu, Oulu, Finland

ARTICLE INFO

ABSTRACT

Keywords
Altechnical debt

Software quality

Survey studies

Software engineering for artificial intelligence
Empirical software engineering

Context: Artificial Intelligence (Al) is pervasive in several application domains and promises to be even more
diffused in the next decades. Developing high-quality Al-enabled systems — software systems embedding one or
multiple Al components, algorithms, and models — could introduce critical challenges for mitigating specific
risks related to the systems’ quality. Such development alone is insufficient to fully address socio-technical
consequences and the need for rapid adaptation to evolutionary changes. Recent work proposed the concept
of AI technical debt, a potential liability concerned with developing Al-enabled systems whose impact can
affect the overall systems’ quality. While the problem of Al technical debt is rapidly gaining the attention
of the software engineering research community, scientific knowledge that contributes to understanding and
‘managing the matter is still limited.

Objective: In this paper, we leverage the expertise of practitioners to offer useful insights to the research
community, aiming to enhance researchers’ awareness about the detection and mitigation of AI technical debt.
Our ultimate goal is to empower practitioners by providing them with tools and methods. Additionally, our
study sheds light on novel aspects that practitioners might not be fully acquainted with, contributing to a
deeper understanding of the subject.

Method: We develop a survey study featuring 53 Al practitioners, in which we collect information on the
practical prevalence, severity, and impact of AI technical debt issues affecting the code and the architecture
other than the strategies applied by practitioners to identify and mitigate them.

Results: The key findings of the study reveal the multiple impacts that Al technical debt issues may have on the
quality of Al-enabled systems (e.g., the high negative impact that Undeclared consumers has on security, whereas
Jumbled Model Architecture can induce the code to be hard to maintain) and the little support practitioners have
v deal with e, Waiited iy doetlv sisasl affcit Soi iennfsition aid Sefietnitre:

Runtime Adaptation

Tao Chen
Department of Computing and
Technology, Nottingham Trent

University, UK;

CERCIA, School of Computer Science,
University of Birmingham, UK

t.chen@cs.bham.ac.uk

ABSTRACT
Self-adaptive system (SAS) can adapt itself to optimize various key
performance indicators in response to the dynamics and uncertainty
in environment. In this paper, we present Debt Learning Driven
Adaptation (DLDA), an framework that dynamically determines
‘when and whether to adapt the SAS at runtime. DLDA leverages the
temporal adaptation debt, a notion derived from the technical debt
metaphor, to quantify the time-varying money that the SAS carries
in relation to its performance and Service Level Agreements. We
designed a temporal net debt driven labeling to label whether it is
economically healthier to adapt the SAS (or not) in a circumstance,
based on which an online machine learning classifier learns the
correlation, and then predicts whether to adapt under the future

i We conducted hensive experiments to eval-
uate DLDA with two different planners, using 5 online machine
learning classifiers, and in comparison to 4 state-of-the-art debt-
oblivious triggering approaches. The results reveal the effectiveness
and superiority of DLDA according to different metrics.

CCS CONCEPTS

« Software and its

— Software p

To Adapt or Not to Adapt? Technical Debt and Learning Driven
Self-Adaptation for Managing Runtime Performance

Rami Bahsoon, Shuo Wang
CERCIA, School of Computer Science,
University of Birmingham, UK
{rbahsoon,s.wang}@cs.bham.ac.uk

Technical debt is context specific

ICPE’18, April 9-13, 2018, Berlin, Germany

Xin Yao

Department of Computer Science and

Engineering, Southern University of
Science and Technology, China;

CERCIA, School of Computer Science,
University of Birmingham, UK

x.yao@cs.bham.ac.uk

thread pool size and cache size, etc), to continually optimize for
different key performance indicators, e.g., response time and en-
ergy consumption, under changing environment such as dynamic
workload [16] [31]. SAS often operate under formally negotiated
legal binding [33][18], e.g, Service Level Agreements (SLA) [3],
especially in paradigms such as services and cloud computing. This
binding allows us to translate the performance of SAS into a more
intuitive monetary way, e.g., instead of saying the SAS’s response
time is 2s in average, we are able to state the SAS creates a total
of $54 profit (or debt) for the owner. The real money that the SAS
carries (either as profit or debt) determines its economic health.
While majority of SAS research has focused on the runtime
planning phase of the SAS that determines what and how to adapt
(e.g., rule-based [7], search-based [11][29][12] or control theoretic
planners [32]), there is little research that explicitly tackles the
challenge of when and whether to adapt the SAS, i.c., how to design
the trigger [31]. We argue that deciding on when adaptation should
be triggered is also non-trivial [31], because the effectiveness of
the diverse planners can vary with the changing circumstances,
ie., SAS’s status and environment conditions. Even if we assume
perfect planning, it still comes with cost, e.g., planning delay and
exira resource/enercv caonsnmntions ete The kev nrobhlem which

Technical Debt in SAS: The State of the art

When and whether to adapt a Self Adaptive System?

TD modeling

O
O

Principal cost: Cost of adaptation

Interest: Penalty due to inability to react to the changing

environment

Goal: Adapting the SAS if and only if it
can make the SAS economically
healthier than not adapting it

Approach:

©)
©)

Train a binary classifier

Set of temporal debt labels
Decide whether it is economically
healthier to adapt a SAS or not

Runtime Adaptation

ICPE*18, April 9-13, 2018, Berlin, Germany

To Adapt or Not to Adapt? Technical Debt and Learning Driven
Self-Adaptation for Managing Runtime Performance

Tao Chen
Department of Computing and
Technology, Nottingham Trent
University, UK;
CERCIA, School of Computer Science,
University of Birmingham, UK
t.chen@cs.bham.ac.uk

ABSTRACT

Self-adaptive system (SAS) can adapt itself to optimize various ke:

performance indicators in response to the dynamics and uncertainty
in environment. In this paper, we present Debt Learning Driven
Adaptation (DLDA), an framework that dynamically determines
when and whether to adapt the SAS at runtime. DLDA leverages the
temporal adaptation debt, a notion derived from the technical debt
metaphor, to quantify the time-varying money that the SAS carries
in relation to its performance and Service Level Agreements. We
designed a temporal net debt driven labeling to label whether it is
economically healthier to adapt the SAS (or not) in a circumstance,
based on which an online machine learning classifier learns the
correlation, and then predicts whether to adapt under the future
circumstances. We conducted comprehensive experiments to eval-
uate DLDA with two different planners, using 5 online machine
learning classifiers, and in comparison to 4 state-of-the-art debt-

Rami Bahsoon, Shuo Wang Xin Yao
CERCIA, School of Computer Science, Department of Computer Science and
University of Birmingham, UK
{rbahsoon,s.wang}@cs.bham.ac.uk

Engineering, Southern University of
Science and Technology, China;
CERCIA, School of Computer Science,
University of Birmingham, UK

yao@cs.bham.ac.uk

thread pool size and cache size, etc), to continually optimize for
different key performance indi response time and en-
ergy consumption, under changing environment such as dynamic
workload [16] [31]. SAS often operate under formally negotiated
legal binding g, Service Level Agreements (SLA) [3],
especially in paradigms such as services and cloud computing. This
binding allows us to translate the performance of SAS into a more
intuitive monetary way, e.g., instead of saying the SAS’s response
time is 2s in average, we are able to state the SAS creates a total
of $54 profit (or debt) for the owner. The real money that the SAS
carries (either as profit or debt) determines its economic health.
‘While majority of SAS research has focused on the runtime
planning phase of the SAS that determines what and how to adapt
(e.g. rule-based [7], search-based or control theoretic
planners [32]), there is little research that explic tackles the
challenge of when and whether to adapt the SAS, i.e., how to design

ger puzzle...

Trivial low hanging fruits:
“General” TD in SAS

e Gravitating around the generic question:
Do TD types showcase peculiarities in SAS?

e CodeTD:
o Are some rule violations more recurrent in
SAS?
o Which SAS components are more affected
by code TD?

o What are the most recurrent causes of
complex code in SAS?

e Self-admitted TD (SATD) in SAS:
o What s the recurrence of SATD items in
SAS?
o To what extent are state of the art SATD
tools effective in SAS?

Trivial low hanging fruits:
“General” TD in SAS

e Architecture TD:

©)

O

Which architectural smells are more
recurrent is SAS?

Are there common technology lock-ins
in SAS?

e Infrastructure TD:

O

Do some recurrent DevOps processes
require manual intervention in SAS?
Are some deprecated technologies still
widely used in SAS?

Going beyond: TD of SAS

e Understand, identify, monitor, and
manage TD specific to SAS

e First step: Characterizing TD of SAS

o Interest: Penalty due to inability
to react to the changing
environment

o Principal: Cost of adaptation... +?

e Starts from personal knowledge,
intuition, and systematic qualitative
data collection

Going beyond: TD of SAS

e TD specific to SAS environment:
o |ll-understood or rushed
environment definition
o Coarse environmental condition
monitoring
o Outdated environment modeling
o ...

Going beyond: TD of SAS

e TD specific to SAS adaptation:

o Rushed adaptation policy

o Over adapting for the sake of
simplicity

o Choosingill-suited adaptation
strategy (periodic vs event-driven
adaptation)

o Simplistic event prediction

O .eee

Going beyond: TD of SAS

e TD specific to Service Agreement Levels
and KPlIs of SAS:

o Misaligned KPIs and SLAs

o Over-optimizing for SLA
compliance

o Overemphasis on easily
measurable KPls

o Overly granular KPIs

o lgnoring KPIl interdependencies
leading to conflicting adaptations

o Inadequate KPI evolution w.r.t.
changing business goals

o ...

How is technical debt
shaping current self-adaptive
systems, and how can we
manage it?

Consider submitting to TechDebt’'25 @

TeCh Debt 2025 Sat 26 April - Sun 4 Ma Ottawa, Ontario, Canada with ICSE 2025

e Flagship conference on Technical
De b t Organizing Committee Techpebt 2025

Alexander Serebrenik General Chair E Maria Teresa Baldassarre pc co-Chair
> Eindhoven University of Technology A \ Department of Computer Science, University of Bari
e Co-located with ICSE -

Roberto Verdecchia pc co-cha J Antonio Curci v

. P roce e d i n gs pa pe r ty pes : Y ‘l’Jal":iversity of Florence - ‘l:lal":iversity of Bari

L3
O Resea rC h/expe r I e n Ce (u p to 10 Marco Tulio Valente Journal First Co-Chair Maxime Lamothe Journal First Co-Chair
' Federal University of Minas Gerais, Brazil Polytechnique Montreal
pages)
O Sho rt (u p to 5 pageS) ;i Simona Motogna Proceedings Chair Nicolas E. Diaz Ferreyra pubiicity Co-Chair

Babes-Bolyai University, Cluj-Napoca Hamburg University of Technology

nia G

e Deadline November 15

Neil Ernst mip co-chair < Paris Avgeriou mip Co-Chair
University of Victoria University of Groningen, The Netherlands
i N nds

Zadia Codabux shadow PC Co-Chair Ipek Ozkaya Mentor, Coordinator of the Mentoring
University of Saskatchewan Program
C Carnegie Mellon University

Carolyn Seaman wentor Christoph Treude Mentor
University of Maryland Baltimore County Singapore Management University

s re

Technical debt types

Code TD: complex code, code
violations, dead code, ...

Requirements TD, e.g,, ill-defined
requirements, simplistic context definition...

Test TD: low coverage, flaky tests,
underperformance tests, ...

Architecture TD: architectural smells,
technology lock-in, stuck on POF, ...

Requirements TD, e.g., ill-defined
requirements, simplistic context definition...

Trivial low hanging fruits:
“General” TD in SAS

e Based on the generic question:
Do TD types showcase peculiarities in SAS?

e CodeTD:
o Are some rule violations more recurrent in
SAS?
o Which SAS components are more dffected
by code TD?
o What are the most recurrent causes of
complex code in SAS?

e Self-admitted TD (SATD) in SAS:
o What is the recurrence of SATD items in
SAS?
o To what extent are state of the art SATD
tools effective in SAS?

Technical debt is context specific

Technical Debt and Learning Driven
Runtime Performance

Going beyond: TD of SAS

o TD specific to Service Agreement Levels
and KPlIs of SAS:

o Misaligned KPIs and SLAs

o Over-optimizing for SLA
Compliance

o Overemphasis on easily
measurable KPls

o Overly Granular KPIs

o Ignoring KPI Interdependencies
leading to conflicting adaptations

o Inadequate KPI evolution w.r.t.
changing business goals

